Runx2 deficiency in chondrocytes causes adipogenic changes in vitro.
نویسندگان
چکیده
Runx2 (runt-related transcription factor 2) is an important transcription factor for chondrocyte differentiation as well as for osteoblast differentiation. To investigate the function of Runx2 in chondrocytes, we isolated chondrocytes from the rib cartilage of Runx2-deficient (Runx2-/-) mice and examined the effect of Runx2 deficiency on chondrocyte function and behavior in culture for up to 12 days. At the beginning of the culture, Runx2-/- chondrocytes actively proliferated, had a polygonal shape and expressed type II collagen; these are all characteristics of chondrocytes. However, they gradually accumulated lipid droplets that stained with oil red O and resembled adipocytes. Northern blot analysis revealed that the expression of adipocyte-related differentiation marker genes including PPAR gamma (peroxisome proliferator-activated receptor gamma), aP2 and Glut4 increased over time in culture, whereas expression of type II collagen decreased. Furthermore, the expression of Pref-1, an important inhibitory gene of adipogenesis, was remarkably decreased. Adenoviral introduction of Runx2 or treatment with transforming growth factor-beta, retinoic acid, interleukin-1 beta, basic fibroblast growth factor, platelet-derived growth factor or parathyroid hormone inhibited the adipogenic changes in Runx2-/- chondrocytes. Runx2 and transforming growth factor-beta synergistically upregulated interleukin-11 expression, and the addition of interleukin-11 to the culture medium reduced adipogenesis in Runx2-/- chondrocytes. These findings indicate that depletion of Runx2 resulted in the loss of the differentiated phenotype in chondrocytes and induced adipogenic differentiation in vitro, and show that Runx2 plays important roles in maintaining the chondrocyte phenotype and in inhibiting adipogenesis. Our findings suggest that these Runx2-dependent functions are mediated, at least in part, by interleukin-11.
منابع مشابه
Peroxisome Proliferator-Activated Receptor-γ Promotes Adipogenic Changes in Growth Plate Chondrocytes In Vitro
Chondrocytes and adipocytes are two differentiated cell types which are both derived from mesenchymal cells. The purpose of this study was to investigate whether peroxisome proliferator-activated receptor-gamma (PPARgamma), a transcription factor involved in lineage determination during adipogenesis, is able to induce adipogenic differentiation in growth plate chondrocytes. Isolated epiphyseal ...
متن کاملProtective Effects of Interleukin-4 on Tissue Destruction and Morphological Changes of Bovine Nasal Chondrocytes in vitro
Background: Previous studies have shown that some cytokines have protective effects on cartilage in joint diseases. In the current study, effects of IL-4 against morphological changes and tissue degradation induced by IL-1α on bovine nasal cartilage (BNC) explants were investigated. Methods: Fresh BNC samples were prepared from a slaughterhouse under sterile conditions. BNC explants culture was...
متن کاملKif3a Deficiency Reverses the Skeletal Abnormalities in Pkd1 Deficient Mice by Restoring the Balance Between Osteogenesis and Adipogenesis
Pkd1 localizes to primary cilia in osteoblasts and osteocytes. Targeted deletion of Pkd1 in osteoblasts results in osteopenia and abnormalities in Runx2-mediated osteoblast development. Kif3a, an intraflagellar transport protein required for cilia function, is also expressed in osteoblasts. To assess the relationship between Pkd1 and primary cilia function on bone development, we crossed hetero...
متن کاملReview of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation
Mesenchymal stem cells (MSC) are multipotent cells, functioning as precursors to a variety of cell types including adipocytes, osteoblasts, and chondrocytes. Between osteogenic and adipogenic lineage commitment and differentiation, a theoretical inverse relationship exists, such that differentiation towards an osteoblast phenotype occurs at the expense of an adipocytic phenotype. This balance i...
متن کاملImportance of Floating Chondrons in Cartilage Tissue Engineering
BACKGROUND Dedifferentiation of chondrocytes remains a major problem for cartilage tissue engineering. Chondrocytes loss differentiated phenotype in in vitro culture that is undesired for repair strategies. The chondrocyte is surrounded by a pericellular matrix (PCM), together forming the chondron. PCM has a positive effect on the maintenance of chondrocyte phenotype during culture in compar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 117 Pt 3 شماره
صفحات -
تاریخ انتشار 2004